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Abstract:

With the continuing active research on deep learning, research on stock
price prediction using deep learning has been actively conducted in the
financial industry. This paper proposes a method for predicting stock
price movement using stock and news data. The stock market is
affected by many variables; thus, market volatility should be
considered for predicting stock price movement. Because stock
markets are efficient, all kinds of information are quickly reflected in
stock prices. We create a new fusion mix by combining price and text
data features and propose a hybrid information mixing module
designed using two map blocks for effective interaction between the
two features. We extract the multimodal interaction between the time-
series features of the price data and the semantic features of the text
data. In this paper, a multilayer perceptron-based model, the hybrid
information mixing module, is applied to the stock price movement
prediction to conduct a price fluctuation prediction experiment in a
stock market with high volatility. In addition, the accuracy, Matthews
correlation coefficient (MCC) and F1 score for the stock price
movement prediction were used to verify the performance of the hybrid
information mixing module.

Keywords: stock movement prediction, deep learning, stock price,
Matthews correlation coefficient, multi layer perceptron,
multimodal, Long Short TermMemory(LSTM),Gated Recurrent Unit
(GRU), Perceptron Based Model

1. INTRODUCTION

The With the continuing deep learning research, deep learning
technology has been introduced in the financial industry. As stock
market volatility has expanded during the COVID-19 pandemic,
the accuracy of stock price movement prediction has become a
significant challenge for effective stock market forecasting
research. The importance of studies on stock price prediction is
increasing in natural language processing (NLP) and the financial
industry. The stock market is a highly volatile market affected by
company-related information and stock price indicators; thus,
research on predicting stock price movement using various
variables is constantly being conducted. First, time-series-based
stock price movement prediction research has been conducted in
two primary studies: one using stock price data and one using text
data, such as stock-related news and Twitter. Research using stock
price data generally predicts stock price movement by converting
the opening, high, low, and closing prices and the trading volume
into technical indicators. Methods for learning time-series
characteristics using the convolutional neural network (CNN) or
recurrent neural network (RNN) have been proposed to predict the
variability of time-series data. However, technical analyses using
stock price data face a limitation in that they cannot reveal patterns
that affect stock price fluctuations. In addition to price and text
data, the relationship between companies affects stock market
volatility. By establishing an attention mechanism-based model
and analyzing the influence on stocks using price, text, and
company relationship data, stock price movement prediction
studies have also been conducted. Because various types of

information affect stock prices, a study is conducted to predict
stock price movement by analyzing the relationship between
financial data, social media, and stocks in a hierarchical fashion
based on the hierarchical graph attention network. We propose a
new method to predict stock price movement. In this paper, we
analyze market signals for stock market volatility using price data
and text data. The patterns of stock market volatility are identified
by analyzing stock data using RNN-based models: long short-term
memory (LSTM) and gated recurrent units (GRU). In addition, to
reflect the stock market information contained in the text data for
stock price movement prediction, the contextual information is
identified through the contextual word embedding of the
bidirectional encoder representations from transformers (BERT).
The multimodal time-series market signals from the price and text
data affect the stocks. After extracting the time-series features of
the price data and sematic features of the text data, the extracted
features are combined to create a mixed feature containing
multimodal information. The interaction between the features of
the price and text data is strengthened by mixing the characteristics
of the mixed feature via the hybrid information mixing module. We
devise a hybrid information mixing module consisting of two
multilayer perceptron (MLP) blocks to improve the performance of
stock price movement prediction by effectively mixing the
information for two features. The hybrid information mixing
module consists of the feature-mixing MLP and interaction-mixing
MLP

2. LITERATURESURVEY
[1] “Stock movement prediction from tweets and historical
prices”

Predicting stock market is vital for investors and policymakers, acting
as a barometer of the economic health. We leverage social media data,
a potent source of public sentiment, in tandem with macroeconomic
indicators as government-compiled statistics, to refine stock market
predictions. However, prior research using tweet data for stock market
prediction faces three challenges. First, the quality of tweets varies
widely. While many are filled with noise and irrelevant details, only a
few genuinely mirror the actual market scenario. Second, solely
focusing on the historical data of a particular stock without considering
its sector can lead to oversight. Stocks within the same industry often
exhibit correlated price behaviors. Lastly, simply forecasting the
direction of price movement without assessing its magnitude is of
limited value, as the extent of the rise or fall truly determines
profitability. In this paper, diverging from the conventional methods,
we pioneer an ECON. The framework has following advantages: First,
ECON has an adept tweets filter that efficiently extracts and decodes
the vast array of tweet data. Second, ECON discerns multi-level
relationships among stocks, sectors, and macroeconomic factors
through a self-aware mechanism in semantic space. Third, ECON
offers enhanced accuracy in predicting substantial stock price
fluctuations by capitalizing on stock price movement. We showcase
the state-of-the-art performance of our proposed model using a dataset,
specifically curated by us, for predicting stock market movements and
volatility.
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[2] “Hybrid neural networks for learning the trend in time
series,”

Trend of time series characterizes the intermediate upward and
downward behaviour of time series. Learning and forecasting the
trend in time series data play an important role in many
realapplications, ranging from resource allocation in data centers,
load schedule in smart grid, and so on. Inspired by the recent
successes of neural networks, in this paper we propose TreNet, a
novel end-toned hybrid neural network to learn local and global
contextual features for predicting the trend of time series. TreNet
leverages convolutional neural networks (CNNs) to extract salient
features from local raw data of time series. Meanwhile,
considering the long-range dependency existing in the sequence of
historical trends, TreNet uses a long-short term memory recurrent
neural network (LSTM) to capture such dependency. Then, a
feature fusion layer is to learn joint representation for predicting
the trend. TreNet demonstrates its effectiveness by outperforming
CNN, LSTM, the cascade of CNN and LSTM, Hidden Markov
Model based method and various kernel based baselines on real
datasets.

[3] “Stock prediction using combination of BERT sentiment
analysis and macro economy index,”

This paper proposes a stock price prediction model, which extracts
features from time series data and social networks for prediction of
stock prices and evaluates its performance. In this research, we use
the features such as numerical dynamics (frequency) of news and
comments, overall sentiment analysis of news and comments, as
well as technical analysis of historic price and volume. We model
the stock price movements as a function of these input features and
solve it as a regression problem in a Multiple Kernel Learning
regression framework. Experimental results show that our
proposed method outperforms other baseline methods in terms of
magnitude prediction measures such as RMSE, MAE and MAPE
for three famous Japan companies' stocks in US stock market. The
results indicate that features other than mining from stock prices
themselves improved the performance.

4] ‘““DP-LSTM: Differential privacy-inspired LSTM for stock
prediction using financial news,”’

Stock price prediction is important for value investments in the
stock market. In particular, short-term prediction that exploits
financial news articles is promising in recent years. In this paper,
we propose a novel deep neural network DP-LSTM for stock price
prediction, which incorporates the news articles as hidden
information and integrates difference news sources through the
differential privacy mechanism. First, based on the autoregressive
moving average model (ARMA), a sentiment-ARMA is
formulated by taking into consideration the information of
financial news articles in the model. Then, an LSTM-based deep
neural network is designed, which consists of three components:
LSTM, VADER model and differential privacy (DP) mechanism.
The proposed DP-LSTM scheme can reduce prediction errors and
increase the robustness. Extensive experiments on S&P 500 stocks
show that (i) the proposed DP-LSTM achieves 0.32%
improvement in mean MPA of prediction result, and (ii) for the
prediction of the market index S&P 500, we achieve up to 65.79%
improvement in MSE.

[S] ¢‘Stock price prediction using BERT and GAN,”’

The stock market has been a popular topic of interest in the recent
past. The growth in the inflation rate has compelled people to invest in
the stock and commodity markets and other areas rather than saving.
Further, the ability of Deep Learning models to make predictions on
the time series data has been proven time and again. Technical
analysis on the stock market with the help of technical indicators has
been the most common practice among traders and investors. One
more aspect is the sentiment analysis - the emotion of the investors
that shows the willingness to invest. A variety of techniques have

Vol.15, Issue No 2, 2025

been used by people around the globe involving basic Machine
Learning and Neural Networks. Ranging from the basic linear
regression to the advanced neural networks people have experimented
with all possible techniques to predict the stock market. It's evident
from recent events how news and headlines affect the stock markets
and crypto currencies.

[6] ‘‘Deep attentive learning for stock movement prediction
from social media text and company correlations,”

In the financial domain, risk modelling and profit generation
heavily rely on the sophisticated and intricate stock movement
prediction task. Stock forecasting is complex, given the stochastic
dynamics and non-stationary behaviour of the market. Stock
movements are influenced by varied factors beyond the
conventionally studied historical prices, such as social media and
correlations among stocks. The rising ubiquity of online content
and knowledge mandates an exploration of models that factor in
such multimodal signals for accurate stock forecasting. We
introduce an architecture that achieves a potent blend of chaotic
temporal signals from financial data, social media, and inter-stock
relationships via a graph neural network in a hierarchical temporal
fashion. Through experiments on real-world S&P 500 index data
and English tweets, we show the practical applicability of our
model as a tool for investment decision making and trading.

PROPOSEDMETHODOLOGY

In propose work author using BERT model to extract semantic features
from stock tweets and then extracting time series stock prices from
stock dataset and then both features will be merge and then train by
combining two different models called GRU and LSTM. LSTM will be
used to train stock prices and GRU will be used to train on BERT
features and then both models will be used to combine features and then
trained with MLP (multilayer perceptron) to predict binary
classification label as ‘Stock price will go up or down’.

Advantages:

1.High Accuracy
.2.Less Time Taking

3. EXPERIMENTALANALYSIS

Importing required python classes and packages and reading,
displayingmealsanditssalesdataset.Readinganddisplaying dataset of
different centers which are handling sales and now we will merge
both datasets to find sales from different Centers.

Figure 1: Running Python Server

In above screen python server is started and now open browser and

enter URL as http://127.0.0.1:8000/index.html and press enter key to

get below page.
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4.CONCLUSION

In this paper, we focus on the stock price movement prediction. After
extracting time-series and semantic features, we proposed creating a
mixed feature by mixing two characteristics in a hybrid information
mixing module and mixing the multimodal information in the mixed
feature. The featuremixing and interaction-mixing MLPs of the hybrid
information mixing module operate independently in a row-wise and
column-wise manner. This learning process strengthens the interaction
between the two data characteristics in the row and column information
in the mixed feature to predict stock price movement. The proposed
hybrid information mixing module predicts stock price movements
better than the other models. The experiment results confirm that the
accuracy, MCC, and F1 score of the hybrid information mixing module
are 69.20%, 0.43, and 76.17%, which is improved compared to the
previous model, exhibiting high performance.
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